

语音及语言信息处理国家工程实验室

Pattern Classification (I)

中国科学技术大学 安徽科大讯飞信息科技 股份有限公司

Pattern Classification Problem

- Given a fixed set of finite number of classes: C1, C2, ..., CN.
- We have an unknown pattern/object *P* without its class identity.
- BUT we can measure (observe) some feature(s) *X* about *P*:
 - X is called feature or observation of the pattern P.
 - X can be scalar or vector or vector sequence
 - X can be continuous or discrete
- Pattern classification problem: $X \rightarrow C_i$
 - Determine the class identity for a pattern based on its observation.

Examples of Pattern Classification

- Speech Recognition:
 - Pattern: voice spoken by a human being
 - Classes: language words/sentences used by the speaker
 - Features: speech signal \rightarrow a sequence of feature vectors
 - Continuous, high-dimensional vector
- Image Understanding:
 - Pattern: given images
 - Classes: all known object categories
 - Features: color or gray scales in all pixels
 - Continuous, multiple vectors/matrix
 - Examples: face recognition, OCR (optical character recognition).

Pattern Classification: Paradigm Shift

- Knowledge based
 - Reply on expert(s), small data samples
 - Simple toy problems
- Data-Driven
 - Large data samples
 - Statistical models, machine learning algorithms
- Big Data Era
 - Massive real-world data samples
 - Data intensive computing
 - Parallel/distributed platform: GPU, map-reduce

Big Data in Real Applications?

- How to Measure "Big" ?
- Chinese Speech Recognition

 1K hours 10K hours for training models
 0.2B- recording characters
- Handwritten Chinese Character Recognition
 - 1000 samples for each character class
 - The most commonly used 3755 characters

- Totally 0.004B- character samples
- Population in China: 1.3B+

Statistical Pattern Classification

- Feature Extraction:
 - Domain knowledge
 - Varies from different objects
 - Speech, text, image, handwriting, video, gestures,...
- Statistical Model Training/Learning
- Inference, Matching, Decision

The Basic Theory

• Feature VS. Model (which is more important)

Feature Extraction

- Extraction of Feature Vector
 - Task dependent
 - Domain knowledge
 - Curse of dimensionality
 - Information redundancy and high correlation
- Dimensionality Reduction
 - Linear approaches
 - Principle Component Analysis (PCA)
 - Linear Discriminative Analysis (LDA)
 - Nonlinear approaches
 - Multi-Dimensional Scaling (MDS)
 - Stochastic Neighborhood Embedding (SNE)
 - Manifold Learning: IsoMap, Locally-Linear Embedding (LLE)
 - Neural Networks: Bottleneck

Speech Signal

She had your dark suit in. 0 -1 0.2 0.4 0.6 0.8 1.2 U 8000 D AXR D AA R SH IY HH AE Κ S UW IH N 6000 Т frequency 4000 2000 0 0.6 0.2 0.4 1.2 0.8 0 time

Fundamental Speech Units

- Sentence/Utterance \rightarrow Phrase \rightarrow Word \rightarrow Syllable \rightarrow Phone
- Phone (音素)
 - Abstract name is called "phoneme" (音位)
 - Infinite number of acoustic realization
 - Monophone: context-independent phone
 - Allophone: context-dependent phone
- Other considerations:
 - Language dependency
 - Task or vocabulary dependency
- Example:

Words: How do they turn out later Syllables: How do they turn out la-ter Phones: h aw d uh dh eh t er n aw t l ai t er

Phonemes in American English

Coarticulation (协同发音)

- Definition: acoustic realization of a phone is largely affected by its neighboring contexts.
- Reason: in speech production, articulatory gestures follow dynamics constrained by mechanical time constants associated with the articulator to keep the effort of muscles to a minimum.
- In speech recognition, how to model a phone:
 - Context-independent phone: monophone
 - Context-dependent phone: biphone (left and right) and triphone

Words:How do they turn out laterPhones:h aw d uh dh eh t er n aw t l ai t erMonophonetBiphone(left)eh-tBiphone(right)t+erTriphoneeh-t+er

Acoustic Realization: Speech Waveform

Speech Waveform: Digital Form

.

.

1400:	-529	-405	-601	-1038	51	323	-324	115	698	465
1410:	485	251	166	433	-346	-908	-303	-414	-773	-475
1420:	65	406	672	566	1160	1000	-354	519	417	-702
1430:	-728	-487	-769	-511	-719	-811	227	149	-130	476
1440:	726	439	556	273	175	49	-718	-733	-363 -	661
1450:	-754	-11	318	684	782	1088	999	-108	559	409
1460:	-704	-789	-509	-833	-735	-762	-712	205	80	-88
1470:	576	847	390	552	369	170	-193	-833	-719	-481
1480:	-739	-707	143	408	811	888	1321	685	-101	815
1490:	33	-963	-795	-498	-966	-741	-809	-456	399	66
1500:	-5	817	892	294	496	279	-9 -6	96 -8	20 -69	98
1510:	-534	-753	-254	392	757	985	1265	1187	-266	657
1520:	517	-887	-1134	-406	-830	-987	7 -568	3 -691	239	424
1530:	15	507	1212	474	325	435	-24	-784	-741 -	812
1540:	-653	-532	-278	240	982	999	1221	1196	-463	630
1550:	500	-1023	-1332	1 -298	8 -81	9 -111	LO -59	97 -52	20 34	4 443
1560:	49	526	1297	406	184	367	-438	-883	-589	-949
1570:	-704	-90	-74	261	1413	1188	1332	292	-234	895
1580:	-213	-1468	-106	5 -19	1 -101	L7 -83	38 -64	40 2	0 688	379
1590:	157	941	1170	194	88	-313	-689	-674	-952	-938
1600:	-124	257	-30	1089	1539	1506	5 545	-636	687	269
1610:	-1439	-175	1 -253	3 -53	4 -103	33 -69	91 -7	4 86	2 709) 156
1620:	555	1408	382	-249	-600	-476	-632	-1063	3 -938	-96
1630:	548	57	902	1527	1922	309	-874	618	315	-1606
1640:	-1961	-326	-416	-789	-673	118	970	917	256	494
1650:	1231	439	-591	-940	-278	-724	-103	1 -728	3 223	613
1660:	420	1039	1578	212	6 -26	0 -104	47 67	74 16	5 -204	8 -1771

Feature Extraction: Feature Vector

- A typical setting in most speech recognition system (a 39-dimensional vector)
 - Static feature
 - MFCCs(12d) + Log-Energy (1)
 - Dynamic feature
 - Delta(13d) + Delta-Delta(13d)

MFCC: Mel-Frequency Cepstral Coefficients

-12.520 -6.378 -9.335 -13.065 -13.997 -8.246 4.866 8.722 -4.418 0.149 -12.092-0.341 0.814 0.434 3.185 2.058 -2.153-1.2761.346 -1.841 -3.689 0.826 -1.413 -0.378 2.650 -0.056 -0.550 0.352 0.023 1.102 1.315 0.649 -0.787 -1.324-0.189 0.251 0.870 0.056 -0.016

Dynamic Feature Calculation

Delta coefficients : difference of static feature among consecutive frames Delta-Delta coefficients : difference of delta among consecutive frames

- OCR: Feature Extraction
- An Example for Chinese OCR

Gabor Features

- Uniformly choose 8 x 8 image sampling points
- At each point compute Gabor filter output in 8 directions
- Using 8 x 8 sampling points on 64x64 image we will have 8 x 8 x 8 = 512 dimensional feature vector

Frequency and orientation representations of Gabor filters are similar to those of the human visual system

LDA (Linear Discriminant Analysis)

 LDA matrix is computed in a way to minimize within class feature variations and to maximize between class feature variations

Handwriting Recognition: Feature Extraction

• An Example for Handwritten Chinese Character Recognition

References for Feature Extraction

- "Speech Signal Representations", Chapter 6 in Spoken Language Processing Book (for MFCC extraction)
- M. Lades et al., "Distortion invariant object recognition in the dynamic link architecture," *IEEE Trans. on Computer*, Vol. 42, No. 3, pp.300-311, 1993. (for Gabor filter)
- Z.-L. Bai, Q. Huo, "A study on the use of 8-directional features for online handwritten Chinese character recognition," *Proc. ICDAR*, 2005, pp.262-266. (for feature extraction of Chinese handwriting recognition)

